Respiratory Physiology of Intestinal Air Breathing in the Teleost Fish Misgurxus Axgcillicaudatus
نویسندگان
چکیده
The Japanese weatherloaeh (Misgmnus anguillicaudatus Cantor) can exchange gases both with water, via gills and skin, and with air, via the posterior region of the alimentary canal (intestine). Air breathing occurs by unidirectional ventilation of the alimentary canal with air taken in at the mouth and simultaneous expulsion of intestinal gas from the vent. Although the weatherloaeh is not an obligate airbreather, aerial gas exchange normally occurs even at 10°C in air-saturated water. The alimentary canal was examined histologically to assess differences in capillary density and distribution and the diffusion distance for gases across those regions modified for aerial respiration. A respirometer system specifically designed for 2to 3-g fish allowed continuous measurement of O2 and CO2 exchange via both aquatic and aerial routes at rest and at various ambient temperatures, and respiratory gas partial pressures. Air ventilation volumes, O2 and CO2 partial pressures of exhaled gas, O2 extraction, and O2 and CO2 exchange via the intestine were also determined, allowing the role of the intestine in total gas exchange in the weatherloaeh to be determined and compared with aerial gas exchange organs in other fishes. The alimentary canal is divided into three zones, an anterior glandular portion separated by a spiral section from the posterior, respiratory zone which has the greatest capillary densities and shortest gas diffusion distances. At rest (20°C), the intestine takes up about 20% of total O2 but accounts for less than 3 % of total CO2 elimination (gas exchange ratio = 008 for intestine). O2 extraction averages 50%. Increasing temperature causes only slight increases in total metabolic rate (Q,o for M()2= 1-5-1-8), but highly significant increases in intestinal gas exchange relative to total gas exchange develop as temperature rises. Intestinal gas exchange also rises with decreasing O2 availability. A strong hypoxic drive and weak hypercapnic drive exist for aerial ventilation of the intestine, but are reduced or absent for aquatic ventilation of the gills. In spite of having to function in respiration, absorption, secretion and buoyancy regulation, the potential effectiveness of intestinal gas exchange is shown to be similar to that of other structures used for aerial gas exchange in facultative air-breathing fish.
منابع مشابه
HY POXIA AND I TS INFLUEN CES ON THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS OF SPONTANEOUSLY BREATHING CATS
Effects of acute systemic hypoxia on the cardiovascular system (CYS) and respiration of spontaneously breathing cats were studied in two conditions. 1): Hypoxic air (6-8% 02 in N2) was given to the animal to induce systemic hypoxia for 20 minutes. Hyperventilation at this condition lowered arterial C02 tension (PaC02 hypocapnia). 2): In the second run, induction of hypocapnia was prevented ...
متن کاملDifferential Consequences of Unilateral Nasal Air-Puff Stimulation on Breathing Pattern and Respiratory System Mechanics in Tracheotomized Rats
متن کامل
Respiratory Physiology of the Lake Magadi Tilapia (Oreochromis Alcalicus Grahami), a Fish Adapted to a Hot, Alkaline, and Frequently Hypoxic Environment
The tilapia Oreochromis alcalicus grahami is a unique ureotelic teleost, the only fish that lives in the alkaline hotsprings of Lake Magadi, Kenya. Physical conditions and fish behavior were monitored in the Fish Springs Lagoon area, a site where the tilapia were particularly abundant. Water Po2 and temperature fluctuated more or less in parallel in a diurnal cycle from less than 20 Torr and le...
متن کاملThe origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.
Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air bre...
متن کاملTransition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill desi...
متن کامل